MultiversX价格

(巴西雷亚尔)
R$66.86
-R$4.142 (-5.84%)
BRL
无法搜索到该币种。请检查您的拼写或重新搜索币种名称。
市值
R$19.11亿 #91
流通总量
2,864.68万 / 3,141.59万
历史最高价
R$3,022.35
24 小时成交量
R$1.05亿
3.1 / 5
EGLDEGLD
BRLBRL

了解MultiversX

EGLD(MultiversX)是一种专为高性能区块链平台设计的加密货币,注重可扩展性、安全性和现实世界应用。EGLD以速度和效率为核心,支持快速交易并赋能去中心化应用(dApps),是支付、去中心化金融(DeFi)和数字资产的理想选择。其生态系统为开发者和用户提供了一系列工具,强调简洁性和易用性。通过质押EGLD可获得奖励并维护网络安全,兼具实用性与被动收益机会。凭借对创新和合作伙伴关系的持续投入,EGLD致力于弥合区块链技术与日常应用之间的鸿沟。
本内容由 AI 生成
Layer 1
CertiK
最后审计日期:2021年8月14日 (UTC+8)

免责声明

本页面的社交内容 (包括由 LunarCrush 提供支持的推文和社交统计数据) 均来自第三方,并按“原样”提供,仅供参考。本文内容不代表对任何数字货币或投资的认可或推荐,也未获得欧易授权或撰写,也不代表我们的观点。我们不保证所显示的用户生成内容的准确性或可靠性。本文不应被解释为财务或投资建议。在做出投资决策之前,评估您的投资经验、财务状况、投资目标和风险承受能力并咨询独立财务顾问至关重要。过去的表现并不代表未来的结果。您的投资价值可能会波动,您可能无法收回您投资的金额。您对自己的投资选择自行承担全部责任,我们对因使用本信息而造成的任何损失或损害不承担任何责任。提供外部网站链接是为了用户方便,并不意味着对其内容的认可或控制。

请参阅我们的 使用条款风险警告,了解更多详情。通过使用第三方网站(“第三方网站”),您同意对第三方网站的任何使用均受第三方网站条款的约束和管辖。除非书面明确说明,否则欧易及其关联方(“OKX”)与第三方网站的所有者或运营商没有任何关联。您同意欧易对您使用第三方网站而产生的任何损失、损害和任何其他后果不承担任何责任。请注意,使用第三方网站可能会导致您的资产损失或贬值。本产品可能无法在所有司法管辖区提供或适用。

MultiversX 的价格表现

近 1 年
-57.39%
R$156.91
3 个月
-4.97%
R$70.36
30 天
-15.62%
R$79.23
7 天
-14.04%
R$77.78

MultiversX 社交媒体动态

PixelTrail
PixelTrail
🌱 用这些收益来增加你的财富: 🌟 总利润:+1445%! 📱 准备好开始你的成长之旅了吗?查看我们的应用程序! #DYM #LINK #W #ETC #PEOPLE #EGLD #1INCH #STX
MellowEcho
MellowEcho
🌱 用这些收益来增加你的财富: 🌟 总利润:+1445%! 📱 准备好开始你的成长之旅了吗?查看我们的应用程序! #DYM #LINK #W #ETC #PEOPLE #EGLD #1INCH #STX
QuirkyEdge
QuirkyEdge
🌱 用这些收益来增加你的财富: 🌟 总利润:+1445%! 📱 准备好开始你的成长之旅了吗?查看我们的应用程序! #DYM #LINK #W #ETC #PEOPLE #EGLD #1INCH #STX

快捷导航

MultiversX购买指南
开始入门数字货币可能会让人觉得不知所措,但学习如何购买比您想象的要简单。
预测 MultiversX 的价格走势
MultiversX 未来几年值多少?看看社区热议,参与讨论一波预测。
查看 MultiversX 的价格历史
追踪 MultiversX 代币的价格历史,实时关注持仓表现。您可以通过下方列表快捷查看开盘价、收盘价、最高价、最低价及交易量。
持有 MultiversX 仅需三步

免费创建欧易账户

为账户充值

选择要购买的代币

欧易提供 60 余种欧元交易对,助您优化资产的多元配置

MultiversX 常见问题

EGLD 的历史最高价格是 490 美元每枚,是在 2021年11月23日达到的。在达到历史最高价值之前,该项目宣布了一项 12.9 亿美元的流动性激励计划。
EGLD 市值为 1,095,190,497 美元,完全稀释后的市值为 1,486,381,995 美元。
Elrond 的总供应量为 3,140 万枚,流通供应量为 2,315 万枚。剩余的 EGLD 将在未来十年逐步释放,直到达到最大供应。
目前,一个 MultiversX 价值是 R$66.86。如果您想要了解 MultiversX 价格走势与行情洞察,那么这里就是您的最佳选择。在欧易探索最新的 MultiversX 图表,进行专业交易。
数字货币,例如 MultiversX 是在称为区块链的公共分类账上运行的数字资产。了解有关欧易上提供的数字货币和代币及其不同属性的更多信息,其中包括实时价格和实时图表。
由于 2008 年金融危机,人们对去中心化金融的兴趣激增。比特币作为去中心化网络上的安全数字资产提供了一种新颖的解决方案。从那时起,许多其他代币 (例如 MultiversX) 也诞生了。
查看 MultiversX 价格预测页面,预测未来价格,帮助您设定价格目标。

深度了解MultiversX

Elrond 是一种软件协议,使区块链技术安全、全球可扩展和可互操作。它的分片架构允许智能合约的无障碍执行,交易费用低,速度接近实时。


Elrond 的软件基础设施包括两个独特的功能——自适应状态分片和安全权益证明(SPoS)共识机制。该网络还使用了 Elrond WASM VM,这是一种快速的虚拟机,可以用任何编程语言运行智能合约并编译到 WebAssembly。


自适应分片发生在每个级别,包括事务、数据和区块链。这意味着基础设施可以动态地进行调整,以提供高吞吐量和速度。分片机制根据区块链使用情况或当时可用的验证器节点数量自动合并或分割。为了提高效率,在共识机制中使用了分片。SPoS 共识通过一个无法预测或影响的随机源从碎片中选择共识验证器节点。验证器使用改进的 BLC 多重签名方案对区块进行验证等等。


Elrond 还有一个集成开发环境,允许开发人员在平台上为用户协作、编写和创建程序和分布式应用程序。用户还可以创建自己的 Elrond 标准数字货币,Elrond 标准是 ERC-20 的进阶标准版本。


Elrond 的原生数字货币 EGLD 有多种应用。它是该网络的主要流通货币,用于验证者奖励、质押、交易和智能合约支付。它也是平台治理机制的必要组成部分。


EGLD 的价格和经济模型

该项目的 token 总供应量限制在 3,142 万枚。在最初发布 2,000 万代币之后,Elrond 协议打算在未来十年逐步发布 EGLD 代币,直到达到其最大供应量。Elrond 的代币最初作为 ERD 在币安链上可用。后来改名为 EGLD。目前流通中的代币略多于 2,000 万枚。


EGLD 的价格在 2021 年 11 月 23 日达到 490 美元的历史高点。此前,该项目宣布了一项 12.9 亿美元的流动性激励计划。


2019 年 6 月,该项目以每个代币 0.5 美元的价格在私募中筹集了 190 万美元,在其首次交换发行(IEO)中,以每个代币 0.65 美元的价格将其总代币供应的 25% 交换为 325 万美元。


四分之一的代币供应供公众销售,其余 15% 保留给私人销售。5% 预留给未来的轮,剩下的代币分配给质押奖励、捐赠、社区、顾问、公司和团队。


创始人团队

Elrond 于 2017 年由 Lucian Todea、Beniamin Mincu 和 Lucian Mincu 共同创立,由马耳他的 Elrond Network 公司运营,负责项目的发展。


在创立 Elrond 之前,Beniamin Mincu 是 Nem Core 的产品和业务主管,并与他的兄弟兼工程师 Lucian Mincu 共同创立了 MetaChain Capital,这是一家领先的数字资产投资基金。Lucian Todea 是 Soft32 的创始人和首席执行官。他也是 mobilPay 的合伙人,也是 Typing DNA 和 Smart Bill 的天使投资人。


Elrond 协议还拥有一个强大的企业家、工程师和开发人员团队,他们拥有令人印象深刻的经验和成功记录。


Elrond 项目亮点

Elrond 实施了了最大的 DeFi 流动性激励计划。

2021 年 11 月,Elrond 宣布了一项 12.9 亿美元的流动性激励计划,用于其 Maiar DEX DeFi 平台的推广。该项目使用原生代币 MEX 在其 DEX(去中心化交易所)用户中总计分发 2.82 亿美元。


首席执行官 Beniamin Mincu 表示:“通过将 Maiar DEX 的所有权分配给下一个 10 亿用户,该项目寻求为一个真正的全球金融系统奠定基础,使每个人都可以在任何地方访问。”


运行时验证框架扩展了对 Elrond 生态的承诺。

Elrond 用户响应 NASA-协议运行时验证框架来开发它的核心组件和应用程序协议。自从运行时验证团队成立以来,Elrond 就一直与之合作。Elrond 宣布,该团队已通过成为非托管股权提供者,扩展了对 Elrond 生态系统的承诺。


这不仅将为生态系统提供 EGLD 委托服务,而且还将显著促进网络安全和去中心化。截至 2022 年 9 月 16 日,运行时验证质押池已经拥有 5 个活动节点,提供 ±11% 的 APR 和有上限的委托限制。

ESG 披露

ESG (环境、社会和治理) 法规针对数字资产,旨在应对其环境影响 (如高能耗挖矿)、提升透明度,并确保合规的治理实践。使数字代币行业与更广泛的可持续发展和社会目标保持一致。这些法规鼓励遵循相关标准,以降低风险并提高数字资产的可信度。
资产详情
名称
OKCoin Europe Ltd
相关法人机构识别编码
54930069NLWEIGLHXU42
代币名称
MultiversX EGLD
共识机制
MultiversX EGLD is present on the following networks: Binance Smart Chain, Multiversx. Binance Smart Chain (BSC) uses a hybrid consensus mechanism called Proof of Staked Authority (PoSA), which combines elements of Delegated Proof of Stake (DPoS) and Proof of Authority (PoA). This method ensures fast block times and low fees while maintaining a level of decentralization and security. Core Components 1. Validators (so-called “Cabinet Members”): Validators on BSC are responsible for producing new blocks, validating transactions, and maintaining the network’s security. To become a validator, an entity must stake a significant amount of BNB (Binance Coin). Validators are selected through staking and voting by token holders. There are 21 active validators at any given time, rotating to ensure decentralization and security. 2. Delegators: Token holders who do not wish to run validator nodes can delegate their BNB tokens to validators. This delegation helps validators increase their stake and improves their chances of being selected to produce blocks. Delegators earn a share of the rewards that validators receive, incentivizing broad participation in network security. 3. Candidates: Candidates are nodes that have staked the required amount of BNB and are in the pool waiting to become validators. They are essentially potential validators who are not currently active but can be elected to the validator set through community voting. Candidates play a crucial role in ensuring there is always a sufficient pool of nodes ready to take on validation tasks, thus maintaining network resilience and decentralization. Consensus Process 4. Validator Selection: Validators are chosen based on the amount of BNB staked and votes received from delegators. The more BNB staked and votes received, the higher the chance of being selected to validate transactions and produce new blocks. The selection process involves both the current validators and the pool of candidates, ensuring a dynamic and secure rotation of nodes. 5. Block Production: The selected validators take turns producing blocks in a PoA-like manner, ensuring that blocks are generated quickly and efficiently. Validators validate transactions, add them to new blocks, and broadcast these blocks to the network. 6. Transaction Finality: BSC achieves fast block times of around 3 seconds and quick transaction finality. This is achieved through the efficient PoSA mechanism that allows validators to rapidly reach consensus. Security and Economic Incentives 7. Staking: Validators are required to stake a substantial amount of BNB, which acts as collateral to ensure their honest behavior. This staked amount can be slashed if validators act maliciously. Staking incentivizes validators to act in the network's best interest to avoid losing their staked BNB. 8. Delegation and Rewards: Delegators earn rewards proportional to their stake in validators. This incentivizes them to choose reliable validators and participate in the network’s security. Validators and delegators share transaction fees as rewards, which provides continuous economic incentives to maintain network security and performance. 9. Transaction Fees: BSC employs low transaction fees, paid in BNB, making it cost-effective for users. These fees are collected by validators as part of their rewards, further incentivizing them to validate transactions accurately and efficiently. MultiversX employs a consensus model called Secure Proof of Stake (SPoS), which integrates elements of Proof of Stake (PoS) with a rapid, randomized validator selection process. SPoS enables efficient and scalable consensus with high throughput and low latency. Core Components: 1. Secure Proof of Stake (SPoS): Randomized Validator Selection: Validators are selected in under 100 milliseconds based on their stake, with a quick rotation to maintain efficiency and prevent centralization. Validator and Observer Nodes: Validator nodes process transactions and produce blocks, while Observer nodes are read-only, providing data access and network monitoring. 2. Adaptive State Sharding: Parallel Transaction Processing: Adaptive State Sharding splits the network into shards, allowing for simultaneous transaction processing across multiple shards, which enhances scalability and network performance. 3. Meta Chain Coordination: Cross-Shard Finalization: The Meta Chain manages cross-shard transactions, finalizing blocks and ensuring data consistency between shards.
奖励机制与相应费用
MultiversX EGLD is present on the following networks: Binance Smart Chain, Multiversx. Binance Smart Chain (BSC) uses the Proof of Staked Authority (PoSA) consensus mechanism to ensure network security and incentivize participation from validators and delegators. Incentive Mechanisms 1. Validators: Staking Rewards: Validators must stake a significant amount of BNB to participate in the consensus process. They earn rewards in the form of transaction fees and block rewards. Selection Process: Validators are selected based on the amount of BNB staked and the votes received from delegators. The more BNB staked and votes received, the higher the chances of being selected to validate transactions and produce new blocks. 2. Delegators: Delegated Staking: Token holders can delegate their BNB to validators. This delegation increases the validator's total stake and improves their chances of being selected to produce blocks. Shared Rewards: Delegators earn a portion of the rewards that validators receive. This incentivizes token holders to participate in the network’s security and decentralization by choosing reliable validators. 3. Candidates: Pool of Potential Validators: Candidates are nodes that have staked the required amount of BNB and are waiting to become active validators. They ensure that there is always a sufficient pool of nodes ready to take on validation tasks, maintaining network resilience. 4. Economic Security: Slashing: Validators can be penalized for malicious behavior or failure to perform their duties. Penalties include slashing a portion of their staked tokens, ensuring that validators act in the best interest of the network. Opportunity Cost: Staking requires validators and delegators to lock up their BNB tokens, providing an economic incentive to act honestly to avoid losing their staked assets. Fees on the Binance Smart Chain 5. Transaction Fees: Low Fees: BSC is known for its low transaction fees compared to other blockchain networks. These fees are paid in BNB and are essential for maintaining network operations and compensating validators. Dynamic Fee Structure: Transaction fees can vary based on network congestion and the complexity of the transactions. However, BSC ensures that fees remain significantly lower than those on the Ethereum mainnet. 6. Block Rewards: Incentivizing Validators: Validators earn block rewards in addition to transaction fees. These rewards are distributed to validators for their role in maintaining the network and processing transactions. 7. Cross-Chain Fees: Interoperability Costs: BSC supports cross-chain compatibility, allowing assets to be transferred between Binance Chain and Binance Smart Chain. These cross-chain operations incur minimal fees, facilitating seamless asset transfers and improving user experience. 8. Smart Contract Fees: Deployment and Execution Costs: Deploying and interacting with smart contracts on BSC involves paying fees based on the computational resources required. These fees are also paid in BNB and are designed to be cost-effective, encouraging developers to build on the BSC platform. MultiversX incentivizes network participation through staking rewards and transaction fees, supporting network security and performance. Incentive Mechanisms: 1. Staking Rewards for Validators and Delegators: Validator Rewards: Validators earn EGLD tokens for processing transactions and producing blocks. Delegation Rewards: EGLD holders can delegate their tokens to validators to receive a portion of the staking rewards without managing a node. Applicable Fees: 1. Transaction Fees: Fee Structure: Fees are paid in EGLD and vary based on transaction complexity and size, covering smart contract execution, asset transfers, and other network interactions. 2. Delegation Opportunities: Passive Staking for EGLD Holders: EGLD holders who delegate their tokens share in staking rewards, supporting network security and earning passive income.
信息披露时间段的开始日期
2024-09-24
信息披露时间段的结束日期
2025-09-24
能源报告
能源消耗
742016.35099 (kWh/a)
可再生能源消耗
29.306427896 (%)
能源强度
0.00034 (kWh)
主要能源来源与评估体系
To determine the proportion of renewable energy usage, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal energy cost wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Share of electricity generated by renewables - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/share-electricity-renewables.
能源消耗来源与评估体系
The energy consumption of this asset is aggregated across multiple components: For the calculation of energy consumptions, the so called 'bottom-up' approach is being used. The nodes are considered to be the central factor for the energy consumption of the network. These assumptions are made on the basis of empirical findings through the use of public information sites, open-source crawlers and crawlers developed in-house. The main determinants for estimating the hardware used within the network are the requirements for operating the client software. The energy consumption of the hardware devices was measured in certified test laboratories. When calculating the energy consumption, we used - if available - the Functionally Fungible Group Digital Token Identifier (FFG DTI) to determine all implementations of the asset of question in scope and we update the mappings regulary, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts. To determine the energy consumption of a token, the energy consumption of the network(s) binance_smart_chain is calculated first. For the energy consumption of the token, a fraction of the energy consumption of the network is attributed to the token, which is determined based on the activity of the crypto-asset within the network. When calculating the energy consumption, the Functionally Fungible Group Digital Token Identifier (FFG DTI) is used - if available - to determine all implementations of the asset in scope. The mappings are updated regularly, based on data of the Digital Token Identifier Foundation. The information regarding the hardware used and the number of participants in the network is based on assumptions that are verified with best effort using empirical data. In general, participants are assumed to be largely economically rational. As a precautionary principle, we make assumptions on the conservative side when in doubt, i.e. making higher estimates for the adverse impacts.
排放报告
DLT 温室气体排放范围一:可控排放
0.00000 (tCO2e/a)
DLT 温室气体排放范围二:外购排放
305.70780 (tCO2e/a)
温室气体排放强度
0.00014 (kgCO2e)
主要温室气体来源与评估体系
To determine the GHG Emissions, the locations of the nodes are to be determined using public information sites, open-source crawlers and crawlers developed in-house. If no information is available on the geographic distribution of the nodes, reference networks are used which are comparable in terms of their incentivization structure and consensus mechanism. This geo-information is merged with public information from Our World in Data, see citation. The intensity is calculated as the marginal emission wrt. one more transaction. Ember (2025); Energy Institute - Statistical Review of World Energy (2024) - with major processing by Our World in Data. “Carbon intensity of electricity generation - Ember and Energy Institute” [dataset]. Ember, “Yearly Electricity Data Europe”; Ember, “Yearly Electricity Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Retrieved from https://ourworldindata.org/grapher/carbon-intensity-electricity Licenced under CC BY 4.0.
市值
R$19.11亿 #91
流通总量
2,864.68万 / 3,141.59万
历史最高价
R$3,022.35
24 小时成交量
R$1.05亿
3.1 / 5
EGLDEGLD
BRLBRL
SEPA 免费充值,轻松买入MultiversX